Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766203

RESUMO

Defatted green microalgae Nannochloropsis oceanica (DGM) is a rich source of bioavailable iron. However, its use in foods results in unacceptable color and taste development. Therefore, the purpose of this study was to investigate strategies to enhance the use of DGM in foods. DGM and inulin were encapsulated (EC) in an oil-in-water emulsion using high-pressure homogenization. To confirm iron bioavailability, C57BL/6 mice were fed an iron-deficient diet (ID) for 2 weeks. The mice were then fed one of the four diets: ID, ID + DGM (DGM), ID + EC (EC50 or EC100) for 4 weeks. To test the stability of DGM as an iron fortificant at two different fortification rates of 17.5 mg Fe/kg (50%) or 35 mg Fe/kg (100%), whole (DGM50/DGM100), encapsulated (EC50/EC100) and color-masked (CM50/CM100) DGM were added to wheat flour (WF) at two different temperatures: 20 °C and 45 °C and were examined for 30 days. Acceptability studies were conducted to determine sensory differences between rotis (Indian flat bread) prepared from WF/EC50/CM50/EC100. The mice consuming EC50/EC100 diets showed comparable iron status to DGM-fed mice, suggesting that encapsulation did not negatively impact iron bioavailability. Addition of EC to wheat flour resulted in the lowest Fe2+ oxidation and color change amongst treatments, when stored for 30 days. There were no differences in the overall liking and product acceptance of rotis amongst treatments at both day 0 and day 21 samples. Our results suggest that EC50 can be effectively used as an iron fortificant in WF to deliver highly bioavailable iron without experiencing any stability or sensory defects, at least until 30 days of storage.

2.
Nutrients ; 13(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684539

RESUMO

While rates of malnutrition have declined over the last decade in India due to successful government interventions, the prevalence of anemia remains high. Staple foods provide almost 70% of the daily iron intake. As staple foods are a rich source of phytate, this ingested iron is poorly absorbed. Currently, 59% of children below 3 years of age, 50% of expectant mothers and 53% of women aged 15-19 years are anemic. The most common intervention strategy has been through the use of iron supplements. While the compliance has been low and supplies irregular, such high rates of anemia cannot be explained by iron deficiency alone. This review attempts to fit dietary and cooking practices, field-level diagnostics, cultural beliefs and constraints in implementation of management strategies into a larger picture scenario to offer insights as to why anemia continues to plague India. Since the rural Indian diet is predominantly vegetarian, we also review dietary factors that influence non-heme iron absorption. As a reference point, we also contrast anemia-related trends in India to the U.S.A. Thus, this review is an effort to convey a holistic evaluation while providing approaches to address this public health crisis.


Assuntos
Anemia Ferropriva/epidemiologia , Dieta , Plantas/química , Fatores Socioeconômicos , Disponibilidade Biológica , Humanos , Índia/epidemiologia , Ferro/metabolismo , Deficiências de Ferro
3.
Nutrients ; 12(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727043

RESUMO

Iron deficiency anemia affects 1.2 billion people globally. Our objectives were to determine if (1) supplemental iron extracted from defatted microalgae (Nannochloropsis oceanica, DGM) and (2) a combination of minute amount of plant phytase and inulin could help replete hemoglobin in anemic mice. Mice (7 weeks old) were fed a control diet (6 mg Fe/kg). After 10 weeks, the mice were assigned to three treatments: control, control + DGM iron (Fe-DGM, 39 mg Fe/kg), or control + 1% inulin + 250 units of phytase/kg (INU-PHY, 6 mg Fe/kg). The mice had free access to diets and water for 6 weeks. The Fe-DGM group had elevated blood hemoglobin (p < 0.01) and a two-fold greater (p < 0.0001) liver non-heme iron over the control. Strikingly, the INU-PHY group had 34% greater non-heme iron than the control, despite the same concentrations of iron in their diets. Fe-DGM group had altered (p < 0.05) mRNA levels of hepcidin, divalent metal transporter 1, transferrin and transferrin receptor 1. Iron extracted from defatted microalgae seemed to be effective in alleviating moderate anemia, and INU-PHY enhanced utilization of intrinsic iron present in the rice diet. Our findings may lead to a novel formulation of these ingredients to develop safer and bioavailable iron supplements for iron-deficient populations.


Assuntos
Anemia Ferropriva/terapia , Suplementos Nutricionais , Hemoglobinas/efeitos dos fármacos , Ferro da Dieta/farmacocinética , Microalgas , Ração Animal/análise , Animais , Disponibilidade Biológica , Modelos Animais de Doenças , Camundongos , Oryza
4.
Nutrients ; 12(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218287

RESUMO

Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition, awaits safe and effective preventive strategies. Naturally occurring flavonoid compounds are promising therapeutic candidates against IBD due to their great antioxidant potential and ability to reduce inflammation and improve immune signaling mediators in the gut. In this study, we utilized two maize near-isogenic lines flavan-4-ols-containing P1-rr (F+) and flavan-4-ols-lacking p1-ww (F-) to investigate the anti-inflammatory property of flavan-4-ols against carboxymethylcellulose (CMC)-induced low-grade colonic inflammation. C57BL/6 mice were exposed to either 1% CMC (w/v) or water for a total of 15 weeks. After week six, mice on CMC treatment were divided into four groups. One group continued on the control diet. The second and third groups were supplemented with F+ at 15% or 25% (w/w). The fourth group received diet supplemented with F- at 15%. Here we report that mice consuming F+(15) and F+(25) alleviated CMC-induced increase in epididymal fat-pad, colon histology score, pro-inflammatory cytokine interleukin 6 expression and intestinal permeability compared to mice fed with control diet and F-(15). F+(15) and F+(25) significantly enhanced mucus thickness in CMC exposed mice (p < 0.05). These data collectively demonstrated the protective effect of flavan-4-ol against colonic inflammation by restoring intestinal barrier function and provide a rationale to breed for flavan-4-ols enriched cultivars for better dietary benefits.


Assuntos
Ração Animal , Flavonoides/metabolismo , Mucosa Intestinal/metabolismo , Zea mays , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Biomarcadores , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacologia , Análise de Alimentos , Mucosa Intestinal/efeitos dos fármacos , Masculino , Espectrometria de Massas , Camundongos , Fenóis , Zea mays/química
5.
mSystems ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29034330

RESUMO

Bisphenol A (BPA) accumulates in the maturing gut and liver in utero and is known to alter gut bacterial profiles in offspring. Gut bacterial dysbiosis may contribute to chronic colonic and systemic inflammation. We hypothesized that perinatal BPA exposure-induced intestinal (and liver) inflammation in offspring is due to alterations in the microbiome and colonic metabolome. The 16S rRNA amplicon sequencing analysis revealed differences in beta diversity with a significant reduction in the relative abundances of short-chain fatty acid (SCFA) producers such as Oscillospira and Ruminococcaceae due to BPA exposure. Furthermore, BPA exposure reduced fecal SCFA levels and increased systemic lipopolysaccharide (LPS) levels. BPA exposure-increased intestinal permeability was ameliorated by the addition of SCFA in vitro. Metabolic fingerprints revealed alterations in global metabolism and amino acid metabolism. Thus, our findings indicate that perinatal BPA exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to chronic colon and liver inflammation. IMPORTANCE Emerging evidence suggests that environmental toxicants may influence inflammation-promoted chronic disease susceptibility during early life. BPA, an environmental endocrine disruptor, can transfer across the placenta and accumulate in fetal gut and liver. However, underlying mechanisms for BPA-induced colonic and liver inflammation are not fully elucidated. In this report, we show how perinatal BPA exposure in rabbits alters gut microbiota and their metabolite profiles, which leads to colonic and liver inflammation as well as to increased gut permeability as measured by elevated serum lipopolysaccharide (LPS) levels in the offspring. Also, perinatal BPA exposure leads to reduced levels of gut bacterial diversity and bacterial metabolites (short-chain fatty acids [SCFA]) and elevated gut permeability-three common early biomarkers of inflammation-promoted chronic diseases. In addition, we showed that SCFA ameliorated BPA-induced intestinal permeability in vitro. Thus, our study results suggest that correcting environmental toxicant-induced bacterial dysbiosis early in life may reduce the risk of chronic diseases later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...